Физики обошли стандартный квантовый предел
Исследователи смогли повысить чувствительность гравитационной антенны, обойдя одно из накладываемых квантовой механикой ограничений. Фундаментальные законы физики при этом нарушены не были, ученые использовали свет в так называемом сжатом состоянии. Подробности приводятся в статье Nature Photonics.
Физики смогли преодолеть ограничение, известное как стандартный квантовый предел, при определении положения зеркал внутри детектора гравитационных волн LIGO. Эта установка, построенная в США, представляет собой два перпендикулярных тоннеля длиной около четырех километров. В каждом из них проложена труба, из которой откачан воздух и по которой проходит лазерный луч. Лучи лазеров отражаются от расположенных в концах тоннелей зеркал, а затем снова сходятся вместе. За счет явления интерференции лучи либо усиливают, либо ослабляют друг друга, а величина эффекта зависит от пройденного лучами пути. Теоретически, такой прибор (интерферометр) должен зафиксировать изменение расстояний между зеркалами при проходе через установку гравитационной волны, но на практике точность интерферометра пока что слишком мала.
Работа LIGO с 2002 по 2010 год позволила физикам и инженерам выяснить то, каким образом можно существенно улучшить установку. Сейчас ее перестраивают с учетом новых предложений, поэтому международная группа ученых (включающая сотрудников физфака МГУ и Института прикладной физики в Нижнем Новгороде) провела эксперимент по повышению чувствительности одного из детекторов LIGO выше одного из квантовых барьеров и представила его результаты.
Ученым удалось преодолеть ограничение, известное как стандартный квантовый предел. Оно являлось следствием другого запрета (которые при этом нарушен не был), связанного с принципом неопределенности Гейзенберга. Принцип неопределенности гласит, что при одновременном измерении двух величин произведение ошибок их измерений не может быть меньше определенной константы. Примером таких одновременных измерений является определение координаты и импульса зеркала при помощи отраженного фотона.
Принцип неопределенности Гейзенберга указывает на то, что с ростом точности определения координаты резко падает точность определения скорости. При облучении зеркала множеством фотонов погрешности в измерении скорости приводят к тому, что становится сложнее определить его смещение и, как следствие, положение в пространстве (толку от множества точных измерений, которые противоречат друг другу, немного). Для обхода этого ограничения еще около четверти века назад было предложено использовать так называемые сжатые состояния света (их, в свою очередь, получили в 1985 году), однако реализовать идею на практике удалось только недавно.
Сжатое состояние света характеризуется тем, что разброс (дисперсия) одного из параметров между фотонами сведен к минимуму. Большинство источников света, включая лазеры, такое излучение создать не способны, однако при помощи специальных кристаллов физики научились получать свет в сжатом состоянии. Луч лазера, проходящий через кристалл с нелинейными оптическими свойствами, подвергается спонтанному параметрическому рассеянию: некоторые фотоны превращаются из одного кванта в пару запутанных (квантово коррелированных) частиц. Этот процесс играет важную роль в квантовых вычислениях и передаче данных по квантовым линиям, но физики смогли приспособить его для получения «сжатого света», позволяющего повысить точность измерений.
Ученые продемонстрировали, что использование квантово коррелированных фотонов позволяет уменьшить ошибку измерений до величины, которая выше предсказанного соотношением неопределенностей Гейзенберга уровня (так как это фундаментальный барьер), но меньше стандартного квантового предела, обусловленного взаимодействием множества индивидуальных фотонов. Упростив суть работы, можно сказать, что запутанные частицы из-за связей между собой ведут себя более согласованно, чем независимые фотоны и потому позволяют точнее определить положение зеркала.
Исследователи подчеркивают, что внесенные ими изменения существенно подняли чувствительность детектора гравитационных волн в частотном диапазоне от 50 до 300 герц, который особенно интересен астрофизикам. Именно в этом диапазоне должны, согласно теории, излучаться волны при слиянии массивных объектов: нейтронных звезд или черных дыр. Поиск гравитационных волн является одной из важнейших задач современной физики, однако пока что зарегистрировать их не удается из-за слишком низкой чувствительности существующей аппаратуры.